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SUMMARY

A one-dimensional, time-dependent, isothermal, incompressible, Newtonian fluid, two-phase volume
averaging model was developed to study momentum interaction effects in vertical ducts with bubble flow
regime. For the evaluation of averaged description, potential inviscid flow around bubbles was considered
in order to get closure relationships. The linear dynamic analysis is based on the eigenvalue technique,
determining the domain of the hyperbolic behavior and the void fraction wave velocity, which are
compared with previous models and experimental data. The solution to the partial differential equations
is based on the finite difference technique implicit scheme. These schemes serve to demonstrate the
numerical solution procedure. The numerical results are compared with analytical solution and experi-
mental data for void fraction wave propagation. The importance of the surface tension effect in the
behavior of the phases in transient conditions is shown. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: Navier–Stokes equations; averaged volume transport equations; void wave propagation speed; interfa-
cial effects; two-phase flow; finite difference method

1. INTRODUCTION

One of the main approaches to multiphase flow modelling is the volume averaging of local
instantaneous mass, momentum and energy balances, which is developed using spatial and
time volume averaging theorems [1–4]. An averaged description should provide enough
information for the estimation of the global behavior of the system in terms of averaged
variables. The averaging process shows the interaction between the homogeneous regions
(phases, interfaces and contact lines) in a multiphase system [5]. The averaged transport
equations for multiphase flow can be used to solve several practical problems by analytical
means or numerical approaches.

In the present work, a transient local Reynolds time-averaged formulation of gas and liquid
phases, with two isothermal, incompressible, Newtonian fluids without phase change, is
considered as the starting point for the volume averaging method. The averaging volume
selected is a constant, smaller than the size of the whole system and also larger than the size
of the bubbles and the separation between adjacent bubbles [6–9]. No wall effects are
considered and bubbles are taken as a disperse phase immersed in the liquid. The volume
averaged forms of the mass and momentum balance equations for two-phase flow are used for
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the analysis of momentum interaction effects between phases under steady state and transient
conditions.

A methodical closure procedure was performed in order to get a closed set of continuity and
momentum averaged equations. The closure was formulated as an associated problem for the
deviations around averaged values of the local variables. A particular system of spherical
non-interacting bubbles and potential inviscid flow around bubbles was considered, in order to
get closure relationships [10]. The interfacial effects include drag, virtual mass, covariant
Reynolds stress induced by bubbles, interfacial averaged pressure and surface tension.

When the dispersion of gas bubbles in a continuous liquid phase is represented by two
separated fluids, each having its own motion equation, instabilities may arise in the computa-
tional step. Computational instabilities are related to the complex characteristic roots [11–13].
This means that the theoretical initial-value problem is in general ill-posed, because small
perturbations of the initial value may grow without limit during the evaluation in time of the
two-phase flow system [11]. On the other hand, complex characteristic roots may be attributed
to physical instabilities in flow transitions, such as those from bubble flow to churn or slug
flow, driven by bubble interactions and coalescence [14,15]. It should be stressed that,
according to the requirements of the volume averaging method considered, the occurrence of
such instabilities should set the limits of application of the model. This is due to the fact that
the imposed length scale restrictions are no longer satisfied following the transition to churn or
slug flow regimes, where the number of bubbles is greatly decreased and their size is increased
to lengths in the order of magnitude of the characteristic length of the whole system, e.g. the
pipe diameter [14]. A linear analysis and propagation of void waves are performed in the
present work, with the evaluation of characteristics roots, which represent the fastest and
slowest kinematic wave velocities in the system [16].

The solution for the two-fluid model in order to obtain the velocities, pressures and void
fraction distributions as functions of time and position, is based on a finite difference technique
implicit scheme. This scheme serves to demonstrate the numerical solution procedure. The
system is a column, 1 m in vertical length. A one-dimensional, 100 cell, mesh-centered grid,
consisting of a variable number of axial elements, is used. The concept of donor cell is used for
parameter lumping purposes. Stability of the numerical solutions is improved using this
concept. The integration step used for this model was 1/100 of a second. The results were
compared with experimental data on void propagation in bubbly flows [17,18] and with an
analytic solution taking different sets of superficial velocity conditions.

The interfacial terms are an essential feature of momentum balances. If interfacial terms are
restricted to the interfacial pressure difference for the liquid phase and the interfacial drag
force, a basic numerical solution can be obtained. Other interfacial and bulk mechanisms can
also be considered. In addition, Reynolds stresses slightly modify the basic solution. Con-
versely, added mass terms contribute highly to the reduction of the slip between phases,
because added mass terms involve both the deceleration of gas phase by the liquid and the
continuation of liquid by gas bubbles. Lahey et al. [19] found that the final numerical results
were insensitive to the virtual mass effect, but the numerical stability and efficiency were
greatly improved. This effect changes the value of the eigenvalues of the two-fluid model,
enlarging the real eigenvalue zone.

Surface tension effects are known to substantially influence the behavior of multiphase
dispersed systems and were considered to be the source and flux terms located at the interface
[5,20]. In the present work, the surface tension effect was explicitly considered. This effect was
found to be significant, because its absence causes the deceleration of the gas phase and is very
important in the determination of the hyperbolicity domain. This effect has not been
considered in previous analyses on void propagation in bubbly flows.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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2. MICROSCOPIC TO MACROSCOPIC VARIABLES THROUGH VOLUME
AVERAGING

Bubbling flow through a vertical duct is represented in Figure 1. While Reynolds time averaged
Navier–Stokes equations can be applied to liquid and gas Newtonian fluid phases, both phases
are moving and the application domain of such an equation is unknown. Therefore, consider-
ing both phases as an effective mixture of fluids may be preferred, but additional assumptions
and developments must be made in order to describe such two-phase mixtures. One of the
available techniques to obtain the two-phase flow model is the volume averaging method. This
method can be considered as a mathematical technique which allows the transformation from
local field variables to averaged field variables, using a volume averaging operator. Averaging
equations are not dependent on local variables such as the size and/or velocity of the
individual bubbles, but only on the averaged field variables, once an appropriate closure
scheme has been performed. The averaging method has been applied to both laminar flows
[25,31] and turbulent flows [26,32]. The application of the averaging method to turbulent flows
needs a previous step of time averaging in order to use the Reynolds averaged Navier–Stokes
equations. This leads to the establishment and the closure of turbulent flow before application
of the volume averaging technique.

The system is composed of a continuous liquid phase (water) and a disperse gas phase (air)
made up of a swarm of spherical bubbles. The system is taken to be isothermal and the vertical
duct has a diameter much greater than the size of the individual bubbles. Both phases are
considered locally incompressible and without interfacial mass transfer. Interfacial momentum
transfer is allowed and a constant surface tension is given. The mixture of gas and liquid is
assumed to be either far away from the solid walls of the duct or to present small viscous
effects near the wall, in such a way that wall effects can be neglected.

Figure 1. Macroscopic system and hypothetical averaging volume with two phases present.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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2.1. Local equations

Local equations for mass and momentum transfers, as well as interfacial jump conditions,
are given by the following set:

Continuity equation for phase k

9 · 7̄k=0, (1)

where k is the liquid (l) and gas (g) phases.
Momentum equation for phase k

rk

(7̄k
(t

+rk9 · (7̄k7̄k)+9 · (p̄kI)−9 · t̄k
T−rkgk=0, (2)

where rk, 7k, pk, tk
T are the local variables in the k-phase, representing density, velocity vector,

pressure and total (laminar and turbulent) stress tensor respectively; I represents a unit tensor
and gk is the acceleration of gravity vector.

Interfacial impenetrability condition

(nk−ni) ·nki=0, at Ai, (3)

where 7i is the velocity vector of the interface, nki is the unit vector normal to the interface
pointing out of phase k and Ai represents the interface surface contained in the macroscopic
region (Figure 2).

Interfacial momentum jump condition

%
k= l,g

(−pknki+tk ·nki) =2Hgngis, at Ai, (4)

where s is the interfacial tension and Hg is the mean curvature of the interface (2Hg=
−9 ·ngi).

Particular solutions also require the values of inlet and initial conditions:

BC1 7̄k= f(x, t), at Ake, (5)

BC2 p̄k= p̄k(x), at x=x0, (6)

IC1 7̄k=g(x), at t=0, (7)

where x is the position vector and Ake represents the k-phase entrances and exits associated
with the macroscopic region.

2.2. Volume a6eraged 6ariables

The previous local set of equations cannot be solved for a system with an unknown number
of bubbles moving in the liquid. In order to obtain such an averaged description, an integral
volume averaging operator should be applied to the local equations. The averaging volume
selected is a constant, smaller than the size of the whole system and also larger than the size
of the bubbles and the separation between adjacent bubbles, as can be observed in Figure 2,
where lg and ll are the characteristic lengths of gas and liquid phases respectively, r0 is the
characteristic length of the averaging volume and L is the characteristic macroscopic length of
the duct [6–8].

In order to obtain meaningful averaged quantities, the characteristic length of the averaging
volume, must satisfy the inequality [6]

lk�r0�L. (8)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)



TRANSIENT BUBBLY AIR–WATER FLOWS 1159

Figure 2. Macroscopic region (L), and averaging volume (V). Here r0 is the radius of the averaging volume, lg and
ll are small lengths, ng and nl are the unit normal vectors.

If the foregoing inequality does not hold, or if the scale of the problem of interest is of order
r0, the averaging technique and therefore, the macroscopic theories of multiphase flow should
be modified in order to include appropriate considerations and terms in the corresponding
equations.

2.3. A6eraging operators

Up to this point, Reynolds turbulent variables have been denoted by a bar above the
corresponding symbol. In order to simplify the notation the bar is omitted from this point on.

For the averaging procedure described in this study, the averaging operator for a general
variable ck is defined as

�ck�=
1
V
&

Rk(t)

ck dV, (9)

which is known as a phase a6erage. The intrinsic phase a6erage is given by

�ck�k=
1

Vk

&
Rk(t)

ck dV, (10)

where, Rk(t)¦R3 is the region occupied by phase k and Vk(t) represents the volume of the
k-phase associated with region Rk(t). The phase average and intrinsic phase average are
related by

�ck�=ok�ck�k, (11)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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where ok(t) is the volume fraction, explicitly defined by Vk(t)/V. In order to present the volume
average of Equations (1) and (2), two special averaging theorems are needed. The first one is
the time averaging theorem given by [1,2]#(ck

(t
$

=
(�ck�
(t

−
1
V
&

A i(t)

ck7i ·nki dA. (12)

The second integral theorem is known as the spatial averaging theorem. For some scalar
quantity ck associated with the k-phase, this theorem is given by [1,2,4]

�9ck�=9�ck�+
1
V
&

A i(t)

cknki dA. (13)

If ck is 1, the previous theorems give

(ok

(t
=

1
V
&

A i(t)

nki ·7i dA, (14)

9ok= −
1
V
&

A i(t)

nki dA. (15)

2.4. A6eraged mass equation

The local mass equation given by Equation (1), may be volume averaged using the operators
given above. The result is

(ok

(t
+ok9 · �7k�k+�7k�k ·9ok=0. (16)

The terms of this equation are related to macroscopic compressibility and convective effects.

2.5. A6eraged momentum equation

The transient Reynolds momentum equation (2) is volume averaged as follows. First, the
time and spatial averaging theorems given by Equations (12) and (13) respectively, are applied.
Then, variations in rk within the averaging volume are ignored because density is a parameter
that does not often change in large volumes of flow. Moreover, an order of magnitude analysis
shows that the interfacial stresses are much greater than the bulk stresses. This can be observed
by a numerical comparison shown in Table I, from data reported by Wang et al. [49]

In Table I, the values of bulk stresses in the pipe core were compared with the interfacial
stresses for several void fraction values. Comparison of both kinds of stresses is possible since
the same operation range has been used for both sets of values. It is apparent that interfacial
stresses are far more important than bulk stresses. The same conclusion can be drawn up by
an order of magnitude analysis as follows:

Table I. Comparison of interfacial stresses and bulk stresses

9 · �tk
T� [49]�6g� (m s−1)1/V 	A i(t) nki ·tki

T dAog

0.4 9324 0.4 2.6
8632 0.270.3 1.53

0.2 8075 0.10 1.18
76130.1 0 0.82
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9 · �tk
T�=O

��tk
T�

Lt

�
, (17)

1
V
&

A i(t)

nki ·tki
T dA=O

�(lg/d)�tk
T�

Lo

n
. (18)

In Equations (17) and (18), d is the liquid boundary layer thickness on the surface of the
bubble where the viscous stresses act, and Lt and Lo are characteristic lengths associated with
changes in �tk

T� and changes in ok, respectively. Since (lg/d) is much larger than one and
Lt=O(Lo), the term 9 · �tk

T� in Equation (17) is much smaller than the interfacial stresses,
given by the left-hand side of (18).

With these considerations, the following form of the averaged momentum equation is
obtained:

rk

(

(t
(ok�7k�k)+rk9 · (ok�7k7k�k)+9(ok�pk�k)−okrkgk

= −
1
V
&

A i(t)

pknki dA+
1
V
&

A i(t)

nki ·tki
T dA, (19)

where the relationship between phase averaging and intrinsic phase averaging given by
Equation (11) has been considered, as well as the condition for interfacial null mass transfer,
(3). The terms of Equation (19) involve integrals as well as products of the local variables. The
second term on the left-hand side of Equation (19) requires the use of spatial decomposition
[21,22].

7k=�7k�k+ 7̃k. (20)

Substitution of Equation (20) in the convective term of (19) gives rise to an averaged
convective term together with a convective covariance term, known as the Reynolds stress (tk

Re)
in the field literature [10,23,24]

rk9 · (ok�7k7k�k)=rk9 · (ok�7k�k�7k�k)−9 · (oktk
Re). (21)

On the other hand, Banerjee [25] decomposes the local pressure as the following sum:

pk=�pk�k+�Dpki�+ p̃ki, (22)

where the difference between the intrinsic interfacial average pressure and the intrinsic average
pressure for the k-phase is

�Dpki�=
1
Ai

&
A i(t)

pk dA−
1

Vk

&
Rk(t)

pk dV=�pk�i−�pk�k, (23)

and the deviation from the interfacial average is

p̃ki=pk−�pk�i. (24)

This decomposition has the advantage of distinguishing the contributions of the momentum
exchange terms. Substituting Equations (21) and (22) into (19), the final form of the volume
averaged momentum equations is obtained:

rk

(

(t
(ok�7k�k)+rk9 · (ok�7k�k�7k�k)+ok9�pk�k−�Dpki�9ok−9 · (oktk

Re)−okrkgk

= −
1
V
&

A i(t)

p̃kinki dA+
1
V
&

A i(t)

nki ·tki
T dA. (25)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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2.6. Interfacial jump condition

The local jump conditions (Equations (3) and (4)), can be volume averaged as previously
done with the phase transport equations. The interfacial mass jump condition is null according
to the impenetrability condition given by Equation (3), and the interface momentum jump
condition (4) takes the form (after averaging):

(�pl�i−�pg�i)9og

= %
k= l,g

�1
V
&

A i(t)

(− p̃kinki+nki ·tki
T) dA

�
+2�Hg�is9og+

1
V
&

A i(t)

2H0 gsngi dA. (26)

The first integral contains both non-drag effects (virtual mass forces and lateral lift forces) and
drag effects (interfacial drag forces) [26]. This integral can be expressed by the symbol Mki,
defined as the interfacial force per unit volume of phase k. The previous equation can be
rewritten as

(�pl�i�pg�i)9og=Mli+Mgi+2s�Hg�i9og+
1
V
&

A i(t)

2sH0 gngi dA. (27)

3. ONE-DIMENSIONAL AVERAGED TRANSPORT EQUATIONS

The one-dimensional averaged transport equations can be derived from the three-dimensional
volume averaged transport equations for two-phase flow, given previously. This can be
accomplished for the vectorial momentum equations by a dot product with a unit vector ez in
the axial co-ordinate direction of a polar cylindrical co-ordinate system. The following set of
volume averaged equations is then obtained for a one-dimensional two-phase bubbling flow.
One-dimensional averaged mass transport equation (16) becomes

(ok

(t
+ok

(

(z
�6zk�k+�6zk�k (ok

(z
=0; k= l, g, (28)

where it has been assumed that

�7k�k=ez�6zk�k(z). (29)

One-dimensional averaged momentum equation (25), projected onto the ez-direction, gives

rk

(

(t
(ok�6zk�k)+rk

(

(z
(ok�6zk�k�6zk�k)+ok

(

(z
�pk�k−�Dpki�

(

(z
ok+okrkg

=
(

(z
(okt zzk

Re )+Mki; k= l, g, (30)

where, according to Equation (25), the interfacial force on phase k is given by

Mki= −
1
V
&

A i(t)

ez ·nkip̃ki dA+
1
V
&

A i(t)

ez ·nki ·tki
T dA, (31)

and it has also been considered that

tk
Re=ezezt zzk

Re . (32)

In order to solve this set of equations, it is imperative to propose appropriate closure
relationships for the terms (Dpki), t zzk

Re , Mki. This is the purpose of the following section.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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4. CLOSURE RELATIONSHIPS AND COMPLETE SET OF EQUATIONS

As a first approximation for the evaluation of the previous averaged description, potential flow
around bubbles was considered in order to get closure relationships. Further contributions will
develop closures for low Reynolds number flows, where the importance of averaged viscous
terms should be enhanced.

The momentum transfer between the gas and liquid phases for each phase is given by
Equation (31). For a dilute bubble flow this equation can be represented as a summation of
several forces on an object immersed in a fluid [26]. The main contributions are the two forces
considered here:

Mli=og(FD+FVM), (33)

where the interfacial drag force accounts for the interfacial shear stresses. For a bubbly flow
with uniform bubble size, the axial component of this force, FD is given by [27].

FD=
1
V
&

A i(t)

ez ·nki ·tki dA=
3
8

rl

CD

Rb

(�6zg�g−�6zl�l)��6zg�g−�6zl�l�, (34)

where Rb is the equivalent bubble radius, and the drag coefficient, CD for distorted bubbly
flows, is given by [28]

CD=
4
3

Rb
�g(rl−rg)

s(1−og)
n1/2

. (35)

This drag coefficient was found to fit our tests appropriately, compared with the drag
coefficient for undistorted bubbles. A similar behavior was found by Ruggles et al. [29]. A
detailed analysis on the two-phase drag coefficient is reported by Ishii and Mishima [27].

The virtual mass force, FVM is given by

FVM= −
1
V
&

A i(t)

ez ·nkip̃ki dA=rlCVMaVM, (36)

where the magnitude of the virtual mass acceleration, aVM, for one-dimensional models is given
by [23,30,31]

aVM=
�(�6zg�g

(t
+�6zg�g (�6zg�g

(z
�

−
�(�6zl�l

(t
+�6zl�l (�6zl�l

(z
�

. (37)

The virtual volume coefficient for single spherical particles is CVM=1/2. For different
shapes, CVM is a shape-dependent parameter.

The interfacial pressure, given by Drew [10], is based on the potential flow theory for
inviscid flow and Bernoulli’s equations for an incompressible fluid around a sphere of constant
radius:

�Dpli�=�pl�i−�pl�l= −jrl(�6zg�g−�6zl�l)2, (38)

where j=1/4 for dilute flows. A particular model, considering surface tension effects, can be
proposed by taking

�pg�g−�pl�l=s�Hg�i−jrl(�6zg�g−�6zl�l)2, (39)

where �Hg�i is the mean curvature of the interface, which is given by [33]

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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�Hg�i=
2

Rb

. (40)

The average pressure at the interface and the intrinsic average pressure for the gas phase are
taken to be equal, i.e.

�pg�i$�pg�g. (41)

This assumption is valid, as the average pressure within a bubble is very close to its interfacial
average pressure. Another assumption is that the interfacial average pressure for both phases
is uniform, with a constant surface tension [24,32]. This assumption implies some simplifica-
tions on the momentum jump condition, rewritten from Equation (27) as follows:

Mgi= (�pl�i−�pg�g)
(og

(z
−Mli+2s�Hg�i

(og

(z
−

1
V
&

A i(t)

2sH0 gez ·ngi dA. (42)

The main assumptions to be considered here are: (1) The last term in Equation (42) can be
taken as negligible if the distribution of bubbles is close to a single-sized distribution and, (2)
quasi-static conditions, given by Equation (39) can be assumed. Then

Mgi= −s
2

Rb

(og

(z
−Mli. (43)

Bubbles induce turbulence on the liquid phase. This fact is accounted for by liquid Reynolds
stresses, given by [10]

t zzl
Re= −krlog(�6zg�g−�6zl�l)2, (44)

where k=1/5. The Reynolds stresses in the gas phase can be taken equal to zero, i.e.

t zzg
Re$0, (45)

because the turbulence inside bubbles can be neglected.

4.1. Complete set of equations

The present set of four independent equations, (28) and (30) for k=1, g, has two degrees of
freedom, because there are six unknowns: og, ol, �6zg�g, �6zl�l, �pg�g and �pl�l. The so-called
‘saturation condition’:

og+ol=1 (46)

is a complementary relationship. One more expression can be obtained by derivation of the
closure Equation (39) with respect to z, then

(

(z
�pg�g=

(

(z
�pl�l−2jrl(�6zg�g−�6zl�l)

� (
(z

�6zg�g−
(

(z
�6zl�l�. (47)

Substituting Equation (46) into (28) and (30) for k= l, substituting Equation (48) into (30)
for k=g, and substituting closure relationships given in the previous section, reduces the
system to a closed set of four equations with four unknowns: og, �6zg�g, �6zl�l and �pl�l. These
equations are

(og

(t
+og

(

(z
�6zg�g+�6zg�g (og

(z
=0 in the g-phase, (48)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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(og

(t
−ol

(

(z
�6zl�l+�6zl�l (og

(z
=0 in the l-phase, (49)

rg�6zg�g (og

(t
+ (ogrg+KVM)

(

(t
�6zg�g−KVM

(

(t
�6zl�l+ [rg(�6zg�g)2+s�Hg�i]

(og

(z

+ [2og(rg�6zg�g−jrl6r)+KVM�6zg�g]
(

(z
�6zg�g+ (2jogrl6r−KVM�6zl�l)

(

(z
�6zl�l

+og

(

(z
�pl�l= −ogrgg−ogFD in the g-phase, (50)

−rl�6zl�l (og

(t
−KVM

(

(t
�6zg�g+ (rlol+KVM)

(

(t
�6zl�l−rl[(�6zl�l)2+6 r

2(j+k(og−ol))]
(og

(z

+ (2krlolog6r−KVM�6zg�g)
(

(z
�6zg�g+ [2olrl(�6zl�l−kog6r)+KVM�6zl�l]

(

(z
�6zl�l

+ol

(

(z
�pl�l= −olrlg+ogFD in the l-phase, (51)

where the following equalities and definitions were used:

6r=�6zg�g−�6zl�l, (52)

KVM=ogrlCVM, (53)

ol=1−og. (54)

5. DYNAMIC ANALYSIS AND VOID WAVE PROPAGATION

Two techniques are commonly used to analyze void wave propagation. These are: (1)
evaluation of the eigenvalues (characteristic roots) and eigenvectors of the equation set
[11–13], and (2) linearization of the equation set and analysis of the dispersion relation
[11,32,34–36]. For real characteristic roots, short wavelength disturbances are stabilized, so the
initial-value problem is correctly posed [11]. Complex characteristics may not necessarily
indicate an incorrect formulation, but may be attributed to a physical instability of the
assumed flow configuration, whereby transition to a different flow pattern may take place
[14,15].

5.1. Characteristics for bubbly flows

Equations (48)–(51) constitute the governing set of transient equations for bubbly flow and
can be written in the matrix form

A
(U
(t

+B
(U
(z

=D, (55)

where U is a column vector of dependent variables given by

U=Ã
Ã

Ã

Á

Ä

og

�6 zg�g

�6 zl�l

�p l�l

Ã
Ã

Ã

Â

Å

. (56)
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A and B are matrices given by

A=Ã
Ã

Ã

Á

Ä

1
1
0
0

0
0

(rgog+KVM)
−KVM

0
0

−KVM

(r lol+KVM)

0
0
0
0

Ã
Ã

Ã

Â

Å

, (57)

B=
Ã
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

�6 zg�g

�6 zl�l

�Hg�is

− (j+kog−kol)rl6 r
2

og

0�(rgog+KVM)�6zg�g

−2jr log6r

�
� 2kr logol6r

−KVM�6zg�g

�

0

−o l� 2jr log6r
−KVM�6zl�l

�
�(r lol+KVM)�6zl�l

−2kr logol6r

�

0

0

og

o l

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Â

Å

, (58)

and D is the column vector,

D=Ã
Ã

Ã

Á

Ä

0
0

−ogrgg−ogFD

−o lrlg+ogFD

Ã
Ã

Ã

Â

É

. (59)

The elements of A, B and D are unspecified functions of the components of U. The
characteristic roots l of system (55), are obtained by solving the polynomial characteristic
equation

det[Al−B ]=0. (60)

In general, this equation has four roots. Two of them, which correspond to pressure waves, are
not present in our current model, since incompressible fluids only are considered here. The
other two roots are determined from the determinant

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

(l−�6 zg�g)
(l−�6 zl�l)

−�Hg�is

(j+kog−kol)rl6 r
2

−og

0�(l−�6 zg�g)(rgog+KVM)
+2jr log6r

�
�− (l−�6 zg�g)KVM

−2kr logol6r

�

0
−o l�− (l−�6 zl�l)KVM

−2jr log6r

�
�(l−�6 zl�l)(rlol+KVM)

+2kr logol6r

�

0
0

−og

−o l

=0,

(61)

which renders a second-order characteristic polynomial with solution:

l9* =y9
�n

t

�1/2

, (62)

where

y=
ol(CVM−j−kog+rg*ol)

t
, (63)

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Â

Å
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n=y2t+ogol(j+k−CVM)+o l
2(2j−rg*+Hg*s*−CVM), (64)

t=ogol+CVM+rg*o l
2, (65)

and where the index * has been chosen to indicate the dimensionless forms given by

l9* =
l9−�6zl�l

�6zg�g−�6zl�l, (66)

Hg*s*=
�Hg�is

rl(�6zg�g−�6zl�l)2, (67)

rg*=
rg

rl

. (68)

The initial-value hyperbolic equation set is well-posed, provided it possesses real characteris-
tics. The characteristic roots are real, only if n]0, if nB0 the characteristic l*’s are complex,
therefore instabilities should be expected. Algebraic terms do not affect propagation speed. The
characteristic velocities are closely related to the fastest and slowest propagation speed of
kinematic waves in the system [16].

The evaluation of the interfacial tension effect is based on the potential inviscid flow
approximation around bubbles. This is given by [10]

Mgi= −ksrl

(

(z
[og(�6zg�g−�6zl�l)2]−Mli, (69)

where ks=1/20. This equation is used similarly as Equation (43). The results are shown in Table
II. The results of previous models and a model without interfacial effects are also shown in Table
II.

If k=0, rg*=0 and Hg*s*=0, Equations (63)–(65) reduce to the results of Pauchon and
Banerjee [13], and if rg*=0 and Hg*s*=0, the model obtained is that of Pauchon and Banerjee
[24]. In Lahey’s model [32], the interfacial shear stress of the liquid phase is the same order of
magnitude as t zzl

Re and interfacial tension effect, which involves the gradient of the void fraction,
is not considered. The effect of bubble interaction is considered by Pauchon and Banerjee, [24]
through the functionality of CVM, j and k with og:

CVM(og)=
2og+1

2ol

; j(og)=
1+og

4ol

; k(og)=
1+5ogol

5o l
2 . (70)

Figure 3 is a map of the characteristic l9* as a function of void fraction for bubble flows.
The domain of hyperbolicity of six models is shown in this graph. The mathematical transition
from hyperbolic to non-hyperbolic system (l+* =l−* ) is indicative of possible flow transitions
(bubble coalescence) according to Ruggles et al. [29] Therefore, the model of Pauchon and
Banerjee [13] predicts instability or flow transition for og\0.2646; for Pauchon and Banerjee
[24], og\0.4234 without bubble interaction effects and og\0.1027 with bubble interaction.
Lahey’s model [32] predicts instabilities for og\0.3064. Surface tension effects are found to be
very sensitive to instability, which is predicted for og\0. 7361 using Equation (43) with Rb=3
mm and also for og\0. 3320 using Equation (69). The hyperbolicity domain of the present model
is reduced when Rb\3 mm. If Rb�� the averaging mean curvature �Hg�i�0 and the result
is reduced to the model of Pauchon and Banerjee [24] without bubble interaction effects. Inclusion
of interfacial shear stress also reduces the hyperbolicity domain and is increased with Reynolds
stresses. In particular, the hyperbolicity domain is reduced when CVM\1/2 and increased when
CVM is smaller. The model without interfacial effects is unstable for �6zg�g"�6zl�l.

Figure 3 is a map of the characteristic speeds against void fraction for the six models compared
in Table II. In reported models by Pauchon and Banerjee [13,24] and by Lahey [32],
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Table II. Comparison between models

y n t Model

Pauchon–Benerjee [24] withy2t+ogol(j+k−CVM)+o l
2(2j−CVM)ol(CVM−j−kog)/t

ogol+CVM bubble interaction
+o l

2og

�(j
(ol

+og

(k

(ol

�
Pauchon–Banerjee [13]y2t+ogol(j−CVM)+o l

2(2j−CVM) ogol+CVMol(CVM−j)/t

Lahey [32]ogol+CVM+rg*o l
2y2t+ogol(j+k−CVM)ol(CVM−j−kog+rg*ol)/t

+o l
2(2j−rg*−CVM)−kog

2ol

Present work with Equationy2t+ogol(j+k−CVM)ol(CVM−j−kog+rg*ol+kg)/t ogol+CVM+rg*o l
2

(69)+o l
2(2j−rg*−CVM−ks)

Pauchon–Benerjee [24]y2t+ogol(j+k−CVM)ol(CVM−j−kog)/t ogol+CVM

without bubble interaction+o l
2(2j−CVM)

ogol+rg*o l
2y2t−rg*o l

2 Present work withoutrg*o l
2/t

interfacial effects
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Figure 3. Comparison of void wave models. () Pauchon and Banerjee [24] with bubble interaction, (�) Pauchon
and Banerjee [13], (�) Lahey [32], (
) present work with surface tension effect given by Equation (69), (�) Pauchon
and Banerjee [24] without bubble interaction, (+ ) present work with surface tension effect given by Equation (43) and

Rb=3 mm.

characteristic speeds between 0 and 1 are found for present simulations, but it should be
emphasized that surface tension effects increase characteristic speeds beyond those limits, as
observed in Figure 3. Thus, predicted void fraction waves can have characteristic speeds
greater than �6zg�g (upper branch of l9* , greater than 1) and smaller than �6zl�l (lower branch
of l9* , less than 0) due to surface tension.

5.2. Void wa6e propagation

Some experimental data on bubbly air–water flow are available for the model assessment
[13,17,18,37,38]. In Figures 4 and 5 respectively, the results of analytical solution with
interfacial tension effects (Equation (43)) in explicit form and previous models are compared
with experimental data on void propagation from Mercadier [17] and Bernier [18]. In these
figures, the y-co-ordinate is kept to the same scale in order to view the differences in the results
as the void wave velocity increases.

Bernier’s data [18] covers a narrow range of phase average liquid velocity (also known as
superficial liquid velocity and represented by jl), 05�6zl�50.318 m s−1, with bubble diame-
ters in the order of 0.5 cm and void fractions ranging from 0 to 0.25. Mercadier’s data [17]
covers a range of superficial liquid velocity, −0.055�6zl�51.0 m s−1 and void fractions
ranging from 0 to 0.22.

The two-fluid model is consistent with these data, with the exception of the model with a
bubble interaction term, which over estimates void wave propagation. As a consequence, the
comparison of void wave analysis with void wave propagation data offers a means to assess
dynamic models for interfacial momentum transfer.
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Superficial tension effects are found to be very important in determining the hyperbolicity
domain and only slightly modify the propagation velocity

6. NUMERICAL SOLUTION PROCEDURE

The governing equations (48)–(51) presented above are a coupled set of partial differential
equations (PDE) of the hyperbolic type, for which there are several numerical solution
procedures [39–47]. The method of characteristics [39,40,43] is considered to be difficult and
tedious to apply, so it has been avoided in favour of the more readily applied finite difference
technique which is computationally faster and more flexible than the method of characteristics.

In the present work, transient models and their solution to obtain the velocities, and
pressures and void fraction distributions as functions of time and position, are based on finite
difference in the implicit scheme. These schemes are used to show the numerical solution

Figure 4. (a) Void wave velocity at �6zl�=0 m s−1. (b) Void wave velocity at �6zl�=0.1 m s−1. (c) Void wave
velocity at �6zl�=0.2 m s−1. (d) Void wave velocity at �6zl�=0.29 m s−1. (e) Void wave velocity at �6zl�=0.39 m
s−1. (f) Void wave velocity at �6zl�=0.49 m s−1. () represents Mercadier’s data [17] (1), Lahey [32] (2), Pauchon
and Banerjee without bubble interaction [24] (3), Pauchon and Banerjee [13] (4) and (5), with surface tension effects

using Equations (69) and (43), respectively, and (6) Pauchon and Banerjee with bubble interaction [24].

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1155–1180 (1998)
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Figure 4 (Continued)

procedure, which is easy to programme and validate, using experimental data on void
propagation in bubbly flows, taken over several sets of superficial velocity conditions.

In the present solution a one-dimensional mesh centered grid with 100 cells (0.01 m
separation between cells) and a variable number of axial elements was used for a column, 1 m
in vertical length. The parameters to be determined in each cell are: void fraction, gas velocity,
liquid velocity and liquid pressure. The concept of donor cell is used for parameter lumping
purposes. It states that the fluid exit conditions are same as the fluid conditions in the node
itself. Stability of numerical solutions is improved using this concept. The governing equations
are solved by a fractional time step in each cell.

6.1. Discretization of the a6eraged equations

Using the complete set of differential equations developed in previous sections, the dis-
cretized forms of these equations are developed. Discretization techniques lead to sparse
matrix equations which must be solved at each time step in the simulation. The spatial
discretization scheme used is known as a first-order, upstream donor finite difference scheme
with a truncation error of order Dz.
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Figure 4 (Continued)

The set of equations in discretized form can be written in matrix form as

Aj(U j
o)U j

t+Dt=Bj(U j
o, U j

t, U j−1
t+Dt), (71)

where Dt is defined as the time step, the indices t and t+Dt indicate that the dependent
variables are calculated at the old and new times respectively, j is the cell number where the
variable is calculated. In this equation, the superscript o represents the dummy variables for
the iterative method, U is a column vector of dependent variables given by Equation (56) and
matrix A and column vector B, are given by

Aj=Ã
Ã

Ã

Á

Ä

[L+ (�6 zl�l)j
o]

[(b1)j
oL+ (b2)j

o]
[L+ (�6 zg�g)j

o]
[(a1)j

oL+ (a2)j
o]

0
[− (KVM)j

oL+ (b5)j
o]

(og)j
o

[(a3)j
oL+ (a4)j

o]

− (o l)j
o

[(b3)j
oL+ (b4)j

o]
0

[(a5)j
o− (KVM)j

oL]

0
(o l)j

o

0
(og)j

o

Ã
Ã

Ã

Â

É

, (72)
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Figure 5. (a) Void wave velocity at �6zl�=0 m s−1. (b) Void wave velocity at �6zl�=0.073 m s−1. (c) Void wave velocity
at �6zl�=0.169 m s−1. (d) Void wave velocity at �6zl�=0.318 m s−1. (
) denotes Bernier’s data [18] (1), Lahey (2),
Pauchon and Banerjee without bubble interaction [24] (3), Pauchon and Banerjee [13] (4), and (5) with surface tension

effects using Equations (69) and (43) respectively, and (6) Pauchon and Banerjee with bubble interaction [24].

L(og)j
t+ (�6zl�l)j

o(og)j−1
t+Dt− (ol)j

o(�6zl�l)j−1
t+Dt

(b1)j
oL(og)j

t+ (b2)j
o(og)j−1

t+Dt− (KVM)j
oL(�6zg�g)j−1

t + (b5)j
o(�6zg�g)j−1

t+Dt

+ (ol)j
o(�pl�l)j−1

t+Dt+ (b3)j
oL(�6zl�l)j

t+ (b4)j
o(�6zl�l)j−1

t+Dt+ (og)j
o[(FD)j

o−rlg ]Dz
Ã
Ã

Ã

Ã

Ã

Ã

Ã

Â

Å

(73)Bj=Ã
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

L(og)j
t+ (�6zg�g)j

o(og)j−1
t+Dt+ (og)j

o(�6zg�g)j−1
t+Dt

(a1)j
oL(og)j

t+ (a2)j
o(og)j−1

t+Dt+ (a3)j
oL(�6zg�g)j

t+ (a4)j
o(�6zg�g)j−1

t+Dt

− (KVM)j
oL(�6zl�l)j

t+ (a5)j
o(�6zl�l)j−1

t+Dt+ (og)j
o(�pl�l)j−1

t+Dt− (og)j
o[(FD)j

o+rgg ]Dz

where L=Dz/Dt.
The implicit scheme, results in a set of non-linear equations, which can be solved with some

iterative method. In Equation (71), the variables with indices j−1 and t are known, since these
are the inlet variables and the initial condition, respectively.

The numerical solution of Equation (71) is obtained using the LINPACK program [48],
which is a numerical code for solving simultaneous linear equations. The algorithm on which
this program is based, is the factorization of a matrix using a version of Gaussian elimination
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Figure 5 (Continued)

with partial pivoting. It is necessary, however, to specify the initial conditions, boundary
conditions and properties of fluid phases. This was done for the following values.

6.1.1. Initial condition. At time t=0, particularizing the initial condition for all cells is
specified, for the following variables: (og)j

t, (�6zg�g)j
t, (�6zl�l)j

t.

6.1.2. Boundary conditions. There are entrance values to the system, and these are either
constant or functions of time. These values are: (og)e, (�6zg�g)e, (�6zl�l)e, (�pl�l)e, where the
index e is used to indicate entrance to the system.

6.1.3. Physical parameters. Air density rg, water density rl and surface tension s.

6.2. Solution procedure

Step 1. Assign entrance values to the first cell ( j=1): Ul=Ue.
Step 2. Assign the initial condition at t=0 to variables with index o, for all cells: U j

o=U j
t.

Step 3. Each element of the matrix A (Equation (72)) and each element of the column vector
B (Equation (73)) are calculated using the initial condition given in Step 2.
Step 4. Using the numerical code LINPACK [48], the vector solution U j

t+Dt is obtained.
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Step 5. The iterative process for solving problems in two-phase flow is performed using
discretized forms of the mass and momentum equations for each phase. If the condition
[AjU j

t+Dt−Bj ]5 �error� is not satisfied, the process is restarted from Step 2, but this time
assigning c j

o= (c j
t+c j

t+Dt)/2, until convergence is obtained. The method requires four
iterations at most (low flow) for convergence with Dz=0.01 m and Dt=0.01 s.
Step 6. The process described in Steps 2–5 is repeated from cell j=3 to cell j=n. The
variables calculated in cell j=2 are the entrance variables of cell j=3 and so on successively,
until the entrance variables for cell j=n are calculated at of the cell j=n−1.
Step 7. When all cells are computed, the variables calculated at the new time t+Dt, are
assigned to the variables at time t : U j

t=U j
t+Dt, and the process is restarted from Step 2 until

the total simulation time is reached.

The implantation of this numerical solution procedure in a computer program is straightfor-
ward. However, it should be stressed that matrix A is close to being computationally singular
and the solution could be inaccurate. With appropriate matrix scaling, this problem was
solved.

7. NUMERICAL RESULTS AND DISCUSSION

Interfacial terms are an essential feature of momentum balances. If the only interfacial terms
considered are the interfacial pressure difference for the liquid phase and the interfacial drag
force, a numerical basic solution can be obtained. This solution presents a decaying pattern for
liquid velocity and void fraction, as well as an increasing pattern for gas velocity. The
combination of both patterns is an indication of a pronounced slippage between the phases.
Other interfacial and bulk mechanisms can be additionally considered. Thus, Reynolds stresses
only slightly modify the basic solution. Conversely, added mass terms contribute highly to
reduce slip between phases, since added mass term involves both the deceleration of the gas
phase by the liquid and the continuation of liquid by gas bubbles. In addition, viscous effects
(bulk effects) do not appreciably change the numerical results, while added mass effects greatly
improve numerical stability.

7.1. Void wa6e 6elocity

The transient and steady state phenomena in two-phase flow are controled by the propaga-
tion of void waves (e.g. choking, flooding, void shocks, density wave instabilities, and flow
regime transition). Void waves strongly depend on the closure relationships used in two-fluid
models [13,24,29,32,35]. In the previous section the eigenvalues of the equation set are
evaluated in order to analyze void wave propagation, but in the present section the propaga-
tion of void waves is obtained with a numerical approach.

Void wave propagation speed can be computed from numerical simulation by defining a
travel time of the void wave from a level N of the column to another level N+1. The
following cross-correlation function was defined for that purpose:

Rxy(N, tj)= %
m− j

i=1

[og(N+1, ti+ j)−og(N, ti)]2, (74)

where ti ; i=1, . . . m, is a succession of time instants where the values of void fraction were
recorded. tj ; j=1, . . . n (nBm) is a succession of time delays. The travel time is defined as the
value of tj when Rxy(N, tj) reaches its minimum value. Then the void wave speed is defined as
the ratio of the distance between levels N and N+1 to the travel time previously found.
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Figure 6. Void wave velocity as a function for og for different values of the liquid superficial velocity from Mercadier
[17]. (�) �6zl�=0.0.0 m s−1, (
) �6zl�=0.1 m s−1, (�) �6zl�=0.2 m s−1, (�) �6zl�=0.29 m s−1, (2) �6zl�=0.39

m s−1, () �6zl�=0.49 m s−1.

The dynamic tests were performed for og]0. In these tests, the superficial liquid velocity
�6zl� (phase average liquid velocity) was kept constant while the superficial gas velocity �6zg�
was perturbed around a steady state. The transient behavior of og was numerically calculated
in the levels N and N+1 for a set of times ti ; i=1, . . . m, in order to obtain the wave
propagation speed using the cross-correlation function given by Equation (74).

In Figures 6 and 7 the results from the numerical approach of the model for the interphase
forces in bubbly flow are shown, and are compared with experimental data [17,18] and
analytical solutions on void propagation. The two-phase model with interfacial tension is in
agreement with these data and analytical solutions.

Figure 7. Void wave velocity as a function of og for different values of the liquid superficial velocity from Bernier [18].
(�) �6zl�=0.0 m s−1, (�) �6zl�=0.073 m s−1, (2) �6zl�=0.169 m s−1, () �6zl�=0.318 m s−1.
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Figure 8. Momentum interfacial and bulk effects in transient conditions. (2) Complete effects, () without surface
tension effects, (�) without Reynolds stress effects, (�) without interfacial averaged pressure effects.

7.2. Interfacial and bulk effects

The importance of interfacial and bulk effects in transient condition is studied. The transient
state is produced from a basic steady state condition with values og=0.1518, �6zg�=0.0488 m
s−1 and �6zl�=0.1 m s−1. At 1 s, the superficial gas velocity is disturbed to �6zg�=0.0275 m
s−1 and the following contributions to the model are analyzed:

� full model, with complete interfacial and bulk effects,
� without surface tension effects,
� without Reynolds stress effects,
� without interfacial averaged pressure effects,

In Figure 8, the behaviors of void fraction for the several cases are shown. If Reynolds stress
effects are not considered for a time greater than 2.6 s, the void fraction changes are locally
accelerated. Thus, Reynolds stress effects slightly modify the basic solution. If interfacial
averaged pressure effects are not considered for time greater than 2.6 s, the void fraction
changes are also locally accelerated and the contribution of this effect is greater than Reynolds
stress effects, as it can be seen in Figure 8. Conversely, if surface tension effects are not
considered, the void fraction changes are locally delayed. This effect contributes highly to
modify the kinematic wave structure. Without considering surface tension, the void wave speed
was 0.262 m s−1 and the void fraction reached in the new steady state was 0.0831, but in the
other three cases, the void wave velocity was 0.271 m s−1 and the void fraction for final state
was 0.0816. Moreover, it was found that interfacial pressure effects and surface tension effects
are greatly significant. This fact may be a valuable indication for further modeling, since
surface tension effects have not been considered by previous analyses on void propagation in
bubbly flows. It should be stressed that for times smaller than 2.6 s, the opposite behavior of
analyzed effects could be observed.
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The same test was performed for a constant �6zl�=0.49 m s−1. The behavior of the void
fraction was found to be practically invariant for changes in �6zg�. This behavior can be
understood, because the dynamic motion of mixture is controled by convective effects.
Therefore, interfacial and bulk effects are only important for low superficial liquid velocity.

8. CONCLUSIONS

A set of general volume averaged mass and momentum transport equations with surface
tension and interfacial pressure effects to describe bubble flow behavior in both steady and
transient conditions was developed. Moreover, a very simple, faster and more stable numerical
solution procedure with respect to previous works, was modified in order to numerically solve
the one-dimensional two-fluid model, using the upstream donor cell finite difference technique
in the implicit scheme. A dynamic analysis rendered a map for the characteristic values and
showed that influence of interfacial tension effects is a very important contribution in the
definition of the domain of hyperbolicity (stable region), and predicted void fraction waves
with characteristic speeds greater than intrinsic average gas velocity and smaller than intrinsic
average liquid velocity. A comparison of the results of this study with experimental data and
characteristic velocities (analytical solutions) suggested that the numerical approach developed
is an appropriate technique for the analysis of void wave propagation, and offers a means for
model assessment. The numerical results in transient tests demonstrate that the surface tension
effect causes the acceleration of void fraction waves. Consideration of interfacial pressure and
Reynolds stress effects cause the deceleration of these void fraction waves. The surface tension
effect is more important at low superficial liquid velocities (:0.1 m s−1) than at higher ones
(:0.49 m s−1).
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